Economical Steel Bridge Design & Skewed Bridge Considerations

Michael A. Grubb, P.E.
M.A. Grubb & Associates, LLC
Wexford, PA

mgrubb@zoominternet.net (724) 799-8286

M.A. Grubb Associates, LLC

NSBA Website: www.steelbridges.org

G12.1-2016 Guidelines to Design for Constructability

American Association of State Highway Transportation Officials National Steel Bridge Alliance AASHTO/NSBA Steel Bridge Collaboration

Topics on Steel Girder Design

SPAN ARRANGEMENT CONSIDERATIONS

Structural Unit Lengths

- Single multi-span unit preferred over many simple spans or several continuous-span units
- Eliminating simple spans and deck joints provides savings in:
 - Bearings
 - Cross-frames
 - Expansion devices

Balanced Spans

End spans ideally 75% - 80% of center span

Balanced Span Arrangement

• Yields approximately equal maximum positive moments in the end and interior spans

Balanced Spans

Topics on Steel Girder Design

CROSS-SECTION LAYOUT CONSIDERATIONS

Girder Spacing

Benefits of minimizing number of girder lines:

- Fewer girders to fabricate, inspect, coat, ship and erect
- Fewer bearings to purchase, install and maintain
- Fewer bolts and welded flange splices
- Reduced fabrication and erection time
- Stiffer structure with smaller relative girder deflections
- Reduced out-of-plane rotations

Girder Spacing Future Redecking Under Traffic

- Issues to consider:
 - Girder capacity
 - Stability
 - Uplift
 - Cross-frame forces

- Goal economical cross-section
 - Balance spacing & overhang so that interior/exterior girders are nearly the same size

Dead Load Distribution

• For the cases shown, distribute the noncomposite DC₁ loads equally to each girder (vs. tributary area)

Dead Load Distribution

Assign a larger percentage of the composite DC₂ loads to the exterior girders
 & the adjacent interior girders

• Distribute wearing surface load DW equally to all the girders

Live Load Distribution

- Apply special cross-section analysis to determine the live load distribution to the exterior girders
 - Assumes the entire cross-section rotates as a rigid body about the longitudinal centerline of the bridge:

$$R = \frac{N_L}{N_b} + \frac{X_{ext} \sum^{N_L} e}{\sum^{N_b} x^2}$$
 Eq. (C4.6.2.2.2d-1)

- Total factored moment tends to be larger in exterior girders (also subject to overhang loads)
- Limit size of deck overhangs accordingly

Topics on Steel Girder Design

FRAMING-PLAN LAYOUT CONSIDERATIONS

Field-Section Size

- Field sections are girder sections fabricated and shipped to the bridge site
- Handling and shipping requirements affect the field section lengths selected for design

Field-Section Size I-Girders

- Shipment by truck is the most common means
 - 175 ft. Possible, 80 ft. Comfortable
 - 100 Tons Maximum, 40 Tons No Permit
 - 16 ft. Width Maximum
 - 10 ft. Height

Field-Section Size

L/b Ratio

• L/b Ratio (Art. C6.10.2.2):

$$b_{tfs} \ge \frac{L_{fs}}{85}$$

 b_{tfs} = smallest top flange width within the unspliced girder field section (in.)

 L_{fs} = length of unspliced girder field section (in.)

Cross-Frame & Diaphragm Spacing Requirements

Based on rational analysis

- Nearly uniform spacing desirable
- Satisfy flange resistance requirements

Cross-Frame Spacing Trade-Offs

- Closer spacing
 - Lower cross-frame forces
 - Lower lateral flange moments
 - Higher compression-flange capacity

VS.

- Higher cross-frame cost
- Larger spacing
 - Lower cross-frame cost

VS.

- Larger cross-frame forces
- Larger lateral flange moments
- Lower compression-flange capacity

Preliminary Cross-Frame Spacing

Simple Spans & Positive Moment Regions in End Spans	18 to 25 ft
Positive Moment Regions in Interior Spans	24 to 30 ft
Negative Moment Regions	18 to 24 ft

Topics on Steel Girder Design

I-GIRDER PROPORTIONING CONSIDERATIONS

I-Girder Web Proportioning

Optimum Web Depth

Optimum Web Depth

- Not always possible to achieve optimum depth due to clearance issues or unbalanced spans
- Provides minimum cost girder in absence of depth restrictions
- Function of many factors elusive for composite girders
- May be established based on series of designs with different web depths to arrive at an optimum depth based on weight and/or cost factors

I-Girder Web Proportioning

Span-to-Depth Ratio

Span-to-Depth Ratio (Art. 2.5.2.6.3)

DECK

Simple Spans	0.040L
Continuous spans	0.032L

Suggested Minimum Overall Depth for Composite I-beam

Simple Spans	0.033L
Continuous spans	0.027L

Suggested Minimum Depth for I-beam

- Steel Girder Analysis AND Preliminary Design Program
- I-Girders AND Box Girders

FREE OF CHARGE!

www.steelbridges.org

Design Resources

What Does LRFD SIMON Do?

- Line girder analysis of steel beams
 - > Based on user-defined or program-defined distribution factors
- Iterative design
- Complete AASHTO LRFD code checking (8th Edition)
- Cost analysis based on user-input cost factors
- Customizable processes and output

LRFD SIMON Capabilities

- Simple span or up to 12 continuous spans
- 20 nodes per span
- 1/10th point influence lines
- Partial or full-length dead loads
- AASHTO or user-defined live loads
- Transversely stiffened webs with or without longitudinal stiffeners or unstiffened webs
- Bearing stiffeners
- Parabolic or linear web haunches
- Homogenous or hybrid cross-sections

LRFD SIMON – Optimization Approach

- Automatic incremental design changes to achieve convergence
- Alternatively, can run program for one design cycle for evaluation & make design changes manually
- User must still control what options are explored
 - ➤ Web depth? Stiffened?
 - > Flange size ranges
 - ➤ Material grade(s)
- Successful run does not necessarily mean a good design
- "Best" solution still depends on the Engineer

I-Girder Web Proportioning Web Depth Optimization – LRFD SIMON

DEPTH VARIATION ANALYSIS

	Depth	Weight	Cost
Filename	Inch	Tons	\$
SIMONTUTORIAL_BELOW3	61.00	245.67	513546
SIMONTUTORIAL_BELOW2	63.00	242.74	508186
SIMONTUTORIAL_BELOW1	65.00	243.00	509408
SIMONTUTORIAL	67.00	239.88	502815
SIMONTUTORIAL_ABOVE1	69.00	240.66	504648
SIMONTUTORIAL_ABOVE2	71.00	242.04	507768
SIMONTUTORIAL_ABOVE3	73.00	248.12	518250

I-Girder Web Proportioning

Web Thickness

Web Thickness (Art. 6.10.2.1)

Without Longitudinal Stiffeners	$\frac{D}{t_w} \le 150$
With Longitudinal Stiffeners	$\frac{D}{t_w} \le 300$

½" minimum thickness preferred by fabricators

• Proportioning Requirements (Art. 6.10.2.2):

$$\begin{array}{c|c} b_{\rm f} \\ \hline 2t_{\rm f} \\ \\ b_{\rm f} \geq \frac{{\rm D}}{6} \\ \\ t_{\rm f} \geq 1.1 \, t_{\rm W} \\ \\ \hline 0.1 \leq \frac{{\rm I}_{yc}}{{\rm I}_{yt}} \leq 10 \\ \\ \end{array}$$

Fabricators prefer: $b_f \ge 12$ in.; $t_f \ge 0.75$ in.

Deck Overhang Loads

- Deck Overhang Loads:
 - > Significant effects on exterior girders
 - Amplified top flange lateral bending stresses may be 10 to 15 ksi

$$f_{bu} + f_{\ell} \le \phi_f R_h F_{yc}$$

$$f_{bu} + \frac{1}{3} f_{\ell} \le \phi_f F_{nc}$$

Sizing Flanges for Efficient Fabrication

- Minimum plate size from mill is 48"
- Most economical plate size from mill is 72" to 96"
- Consider sizing flanges so that as many pieces as possible can be obtained from a wide plate of a given grade and thickness with minimal waste
- Limit the number of different flange plate thicknesses specified for a given project

Sizing Flanges for Efficient Fabrication

 Weld shop splices after cutting individual flanges from a single plate

Cut multiple flange plates from slab welded plates

Flange Thickness Transitions

- Affected by plate length availability and economics of welding and inspecting a splice vs. extending a thicker plate
 - Optimal ordered plate lengths usually ≤ 80 feet
 - A welded I-girder flange splice is equivalent to 800 to 1,200 lbs of steel plate
- Three or fewer flange thicknesses per flange (or two shop splices) should be used in a typical field section
- Reduce flange area by no more than one-half the area of the thicker plate at shop splice

Skewed Supports

- Skewed supports are frequently required to span highways and streams not perpendicular to the bridge alignment
- Allow for reduced girder span lengths and bridge deck area, as well as reduced girder depths
- Increased torsion in the girders, larger than normal crossframe forces, unique thermal movements, large differential deflections, longer abutments and piers
- The significance of skew increases with increasing skew and bridge width

Y____x

A

Skewed Example Bridge Dead Load (DC₁) Deflections

DC ₁ (unfactored) in.	Spans 183 Right Bridge Line Girder Analysis	Spans 183 Right Bridge 3D Analysis	Span 1 Skewed Bridge 3D Analysis	Span 2 Skewed Bridge 3D Analysis	Span 3 Skewed Bridge 3D Analysis
G1	-3.15	-3.11	-4.18	-3.67	-2.56
G2	-3.15	-3.16	-3.12	-3.40	-2.57
G3	-3.15	-3.16	-2.57	-3.40	-3.12
G4	-3.15	-3.11	-2.56	-3.67	-4.18

Dead Load (DC₁) Deflections Discontinuous Cross-Frames

(unfactored) in.	Spans 1&3 Right Bridge Line Girder Analysis	Spans 1&3 Right Bridge 3D Analysis	Span 1 Skewed Bridge 3D Analysis	Span 2 Skewed Bridge 3D Analysis	Span 3 Skewed Bridge 3D Analysis			
G1	-3.15	-3.11	-3.68	-2.82	-3.01			
G2	-3.15	-3.16	-2.81	-2.46	-2.61			
G3	-3.15	-3.16	-2.61	-2.46	-2.81			
G4	-3.15	-3.11	-3.01	-2.82	-3.68			

Skew Effects Flange Lateral Bending

- Flange lateral bending should be considered where discontinuous cross-frames are used in conjunction with skews exceeding 20°.
- Lateral bending is usually smaller in the exterior girders than in the interior girders in these cases.
- Flange lateral bending in these cases is probably best handled by a direct structural analysis of the entire superstructure.
- In lieu of a refined analysis, Article C6.10.1 suggests total unfactored flange lateral bending stresses f_ℓ to use for the preceding cases.

?? QUESTIONS ??